Simplified example of how you can implement an image classification CNN using PyTorch for the given e-commerce product categorization task:
Step 1: Import the required libraries.
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
```
Step 2: Preprocess the data and create data loaders.
```python
# Define the data transformations
transform = transforms.Compose([
transforms.Resize((64, 64)), # Resize the images to a fixed size
transforms.ToTensor(), # Convert images to tensors
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalize image data
])
# Load the training dataset
train_dataset = ImageFolder('path_to_train_data_folder', transform=transform)
# Create data loaders
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
```
Step 3: Define the CNN architecture.
```python
class CNNClassifier(nn.Module):
def __init__(self):
super(CNNClassifier, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 16 * 16, 128)
self.fc2 = nn.Linear(128, 3) # Assuming 3 categories: "clothing," "electronics," "home appliances"
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 64 * 16 * 16) # Flatten the output
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
```
Step 4: Train the CNN.
```python
# Instantiate the model
model = CNNClassifier()
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training loop
num_epochs = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in range(num_epochs):
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
print("Training completed.")
```
Step 5: Deploy the model for inference (Assuming you have a separate test dataset).
```python
# Load the test dataset
test_dataset = ImageFolder('path_to_test_data_folder', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Evaluate the model on the test data
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'Test Accuracy: {accuracy:.2f}%')
```
This is a basic example to demonstrate the process. In a real-world scenario, you would further fine-tune the model, perform hyperparameter tuning, and optimize the deployment process for production use. Additionally, you might need to implement data augmentation techniques and deal with class imbalances, depending on the characteristics of your dataset.