Showing posts with label numpy. Show all posts
Showing posts with label numpy. Show all posts

Monday, August 14, 2023

A program for prediction house prices using linear regression without using any library except numpy and python

 Sure, I can help you with that! Here's a simple implementation of linear regression for predicting house prices using Python and NumPy. I'll provide line-by-line explanations for each part of the code:



import numpy as np


# Generate some sample data for demonstration

# In a real-world scenario, you would load your dataset

# X represents the feature (e.g., house size)

# y represents the target variable (e.g., house price)

np.random.seed(42)

X = 2 * np.random.rand(100, 1)

y = 4 + 3 * X + np.random.randn(100, 1)


# Add a column of ones to the feature matrix X for the bias term

X_b = np.c_[np.ones((100, 1)), X]


# Initialize random values for the slope (theta1) and intercept (theta0)

theta = np.random.randn(2, 1)


# Set the learning rate and number of iterations

learning_rate = 0.1

num_iterations = 1000


# Perform gradient descent to update theta

for iteration in range(num_iterations):

    # Calculate the predicted values (y_pred) using the current theta values

    y_pred = X_b.dot(theta)

    

    # Calculate the errors

    errors = y_pred - y

    

    # Calculate the gradients (partial derivatives) for theta0 and theta1

    gradients = 2 / len(X) * X_b.T.dot(errors)

    

    # Update theta using gradient descent

    theta -= learning_rate * gradients


# Print the final theta values (intercept and slope)

print("Intercept:", theta[0][0])

print("Slope:", theta[1][0])



Explanation of the code:


1. Import the required NumPy library.

2. Generate sample data for demonstration purposes. Replace this with your actual dataset.

3. Add a column of ones to the feature matrix X to account for the bias term in the linear equation.

4. Initialize random values for the slope (theta1) and intercept (theta0).

5. Set the learning rate and the number of iterations for gradient descent.

6. Perform gradient descent for the specified number of iterations.

7. Calculate the predicted house prices (y_pred) using the current theta values and the feature matrix X_b.

8. Calculate the errors by subtracting the actual house prices (y) from the predicted prices (y_pred).

9. Calculate the gradients (partial derivatives) for both theta0 and theta1 using the feature matrix X_b and the errors.

10. Update the theta values using the gradient descent update rule.

11. Print the final values of theta0 and theta1, which represent the intercept and slope of the linear regression model.


Remember, this is a simplified example. In practice, you might need to add more features, preprocess the data, split it into training and testing sets, and implement techniques to prevent issues like overfitting.

ASP.NET Core

 Certainly! Here are 10 advanced .NET Core interview questions covering various topics: 1. **ASP.NET Core Middleware Pipeline**: Explain the...