Saturday, July 26, 2025

How cache can be enabled for embeded text as well for search query results in Azure AI ?

 Great question, Rahul! Caching in the context of Azure AI (especially when using **RAG pipelines with Azure OpenAI + Azure AI Search**) can **dramatically reduce latency and cost**, especially for frequently repeated or similar queries.


Here’s how you can cache both:


---


## ✅ 1. **Caching Embedded Text (Documents)**


Since embeddings are expensive to compute and documents rarely change often, caching them is **critical**.


### 💡 Strategy: Use a persistent storage for document embeddings


### 🔧 How:


* Use **Azure Blob Storage**, **Azure SQL**, or **Cosmos DB** to **store each document's embedding** with a content hash (MD5/SHA256) as the key.

* Before calling Azure OpenAI embedding API, **check if hash exists**.

* If yes → retrieve the cached embedding.

* If no → call API, then store.


```python

import hashlib


def get_or_generate_embedding(doc_text):

    content_hash = hashlib.sha256(doc_text.encode()).hexdigest()

    cached = db.get_embedding_by_hash(content_hash)

    if cached:

        return cached

    else:

        embedding = call_openai_embedding(doc_text)

        db.save_embedding(content_hash, embedding)

        return embedding

```


> 🔐 You can even pre-compute and persist embeddings as part of your Logic App ingestion pipeline.


---


## ✅ 2. **Caching Query Embeddings and Search Results**


This is useful when:


* Users repeat similar questions often.

* You want to avoid repeated vector searches.


### 🔧 How:


1. **Hash the user query** → e.g., SHA256 of lowercase query string.

2. Store:


   * The **embedding** (for reuse)

   * The **top N search results** from Azure AI Search as JSON

3. Use **Redis**, Cosmos DB, or Blob as cache store with TTL (e.g., 6 hours).


### Example:


```python

def search_with_cache(query_text):

    query_hash = hashlib.sha256(query_text.lower().encode()).hexdigest()

    

    cached = redis.get(f"search:{query_hash}")

    if cached:

        return json.loads(cached)

    

    # Not in cache, do embedding + search

    query_embedding = get_or_generate_embedding(query_text)

    results = azure_ai_vector_search(query_embedding)

    

    # Cache results for later

    redis.setex(f"search:{query_hash}", 6 * 3600, json.dumps(results))

    return results

```


---


## 🔄 TTL and Invalidation Strategy


| Data                 | TTL suggestion             | Invalidation case               |

| -------------------- | -------------------------- | ------------------------------- |

| Document embeddings  | No expiry (immutable docs) | On document update              |

| Search query results | 6–24 hours                 | Rarely — maybe on index refresh |


---


## 📦 Where to Store Cached Data?


| Option          | Use for                     | Notes                   |

| --------------- | --------------------------- | ----------------------- |

| Azure Redis     | Fastest real-time caching   | Supports TTL, in-memory |

| Azure Cosmos DB | Persistent embedding store  | For doc-level cache     |

| Azure Blob      | Embeddings + metadata files | Low-cost for bulk data  |


---


## 🧠 Bonus: Use Cache for Grounded Response


If you're using a frontend agent (e.g., chatbot or API app), you can even cache the final GPT response based on prompt hash.


---


## 🚀 Result


By caching:


* 🧠 **Embeddings** — you avoid duplicate calls to Azure OpenAI

* 🔍 **Search results** — you reduce load on Azure AI Search

* 💬 **Responses** — you accelerate latency and reduce token cost


---


Let me know if you want to integrate this into your existing **Logic App + Azure Function** pipeline, or if you want to see a Redis + Python codebase sample!


No comments:

Post a Comment

How cache can be enabled for embeded text as well for search query results in Azure AI ?

 Great question, Rahul! Caching in the context of Azure AI (especially when using **RAG pipelines with Azure OpenAI + Azure AI Search**) can...