Showing posts with label Azure AI search. Show all posts
Showing posts with label Azure AI search. Show all posts

Saturday, July 26, 2025

How cache can be enabled for embeded text as well for search query results in Azure AI ?

 Great question, Rahul! Caching in the context of Azure AI (especially when using **RAG pipelines with Azure OpenAI + Azure AI Search**) can **dramatically reduce latency and cost**, especially for frequently repeated or similar queries.


Here’s how you can cache both:


---


## ✅ 1. **Caching Embedded Text (Documents)**


Since embeddings are expensive to compute and documents rarely change often, caching them is **critical**.


### 💡 Strategy: Use a persistent storage for document embeddings


### 🔧 How:


* Use **Azure Blob Storage**, **Azure SQL**, or **Cosmos DB** to **store each document's embedding** with a content hash (MD5/SHA256) as the key.

* Before calling Azure OpenAI embedding API, **check if hash exists**.

* If yes → retrieve the cached embedding.

* If no → call API, then store.


```python

import hashlib


def get_or_generate_embedding(doc_text):

    content_hash = hashlib.sha256(doc_text.encode()).hexdigest()

    cached = db.get_embedding_by_hash(content_hash)

    if cached:

        return cached

    else:

        embedding = call_openai_embedding(doc_text)

        db.save_embedding(content_hash, embedding)

        return embedding

```


> 🔐 You can even pre-compute and persist embeddings as part of your Logic App ingestion pipeline.


---


## ✅ 2. **Caching Query Embeddings and Search Results**


This is useful when:


* Users repeat similar questions often.

* You want to avoid repeated vector searches.


### 🔧 How:


1. **Hash the user query** → e.g., SHA256 of lowercase query string.

2. Store:


   * The **embedding** (for reuse)

   * The **top N search results** from Azure AI Search as JSON

3. Use **Redis**, Cosmos DB, or Blob as cache store with TTL (e.g., 6 hours).


### Example:


```python

def search_with_cache(query_text):

    query_hash = hashlib.sha256(query_text.lower().encode()).hexdigest()

    

    cached = redis.get(f"search:{query_hash}")

    if cached:

        return json.loads(cached)

    

    # Not in cache, do embedding + search

    query_embedding = get_or_generate_embedding(query_text)

    results = azure_ai_vector_search(query_embedding)

    

    # Cache results for later

    redis.setex(f"search:{query_hash}", 6 * 3600, json.dumps(results))

    return results

```


---


## 🔄 TTL and Invalidation Strategy


| Data                 | TTL suggestion             | Invalidation case               |

| -------------------- | -------------------------- | ------------------------------- |

| Document embeddings  | No expiry (immutable docs) | On document update              |

| Search query results | 6–24 hours                 | Rarely — maybe on index refresh |


---


## 📦 Where to Store Cached Data?


| Option          | Use for                     | Notes                   |

| --------------- | --------------------------- | ----------------------- |

| Azure Redis     | Fastest real-time caching   | Supports TTL, in-memory |

| Azure Cosmos DB | Persistent embedding store  | For doc-level cache     |

| Azure Blob      | Embeddings + metadata files | Low-cost for bulk data  |


---


## 🧠 Bonus: Use Cache for Grounded Response


If you're using a frontend agent (e.g., chatbot or API app), you can even cache the final GPT response based on prompt hash.


---


## 🚀 Result


By caching:


* 🧠 **Embeddings** — you avoid duplicate calls to Azure OpenAI

* 🔍 **Search results** — you reduce load on Azure AI Search

* 💬 **Responses** — you accelerate latency and reduce token cost


---


Let me know if you want to integrate this into your existing **Logic App + Azure Function** pipeline, or if you want to see a Redis + Python codebase sample!


How cache can be enabled for embeded text as well for search query results in Azure AI ?

 Great question, Rahul! Caching in the context of Azure AI (especially when using **RAG pipelines with Azure OpenAI + Azure AI Search**) can...